- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bagchi, Saurabh (3)
-
Chaterji, Somali (3)
-
Lee, Jayoung (3)
-
Li, Yin (3)
-
Xu, Ran (3)
-
Wang, Pengcheng (2)
-
Dasari, Venkat (1)
-
Jain, Sarthak (1)
-
Mu, Fangzhou (1)
-
Mukherjee, Preeti (1)
-
Weston, Noah (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xu, Ran; Lee, Jayoung; Wang, Pengcheng; Bagchi, Saurabh; Li, Yin; Chaterji, Somali (, Proceedings of the Seventeenth European Conference on Computer Systems)
-
Lee, Jayoung; Wang, Pengcheng; Xu, Ran; Jain, Sarthak; Dasari, Venkat; Weston, Noah; Li, Yin; Bagchi, Saurabh; Chaterji, Somali (, ACM Transactions on Design Automation of Electronic Systems)Efficient and adaptive computer vision systems have been proposed to make computer vision tasks, such as image classification and object detection, optimized for embedded or mobile devices. These solutions, quite recent in their origin, focus on optimizing the model (a deep neural network, DNN) or the system by designing an adaptive system with approximation knobs. Despite several recent efforts, we show that existing solutions suffer from two major drawbacks. First , while mobile devices or systems-on-chips (SOCs) usually come with limited resources including battery power, most systems do not consider the energy consumption of the models during inference. Second , they do not consider the interplay between the three metrics of interest in their configurations, namely, latency, accuracy, and energy. In this work, we propose an efficient and adaptive video object detection system — Virtuoso , which is jointly optimized for accuracy, energy efficiency, and latency. Underlying Virtuoso is a multi-branch execution kernel that is capable of running at different operating points in the accuracy-energy-latency axes, and a lightweight runtime scheduler to select the best fit execution branch to satisfy the user requirement. We position this work as a first step in understanding the suitability of various object detection kernels on embedded boards in the accuracy-latency-energy axes, opening the door for further development in solutions customized to embedded systems and for benchmarking such solutions. Virtuoso is able to achieve up to 286 FPS on the NVIDIA Jetson AGX Xavier board, which is up to 45 times faster than the baseline EfficientDet D3 and 15 times faster than the baseline EfficientDet D0. In addition, we also observe up to 97.2% energy reduction using Virtuoso compared to the baseline YOLO (v3) — a widely used object detector designed for mobiles. To fairly compare with Virtuoso , we benchmark 15 state-of-the-art or widely used protocols, including Faster R-CNN (FRCNN) [NeurIPS’15], YOLO v3 [CVPR’16], SSD [ECCV’16], EfficientDet [CVPR’20], SELSA [ICCV’19], MEGA [CVPR’20], REPP [IROS’20], FastAdapt [EMDL’21], and our in-house adaptive variants of FRCNN+, YOLO+, SSD+, and EfficientDet+ (our variants have enhanced efficiency for mobiles). With this comprehensive benchmark, Virtuoso has shown superiority to all the above protocols, leading the accuracy frontier at every efficiency level on NVIDIA Jetson mobile GPUs. Specifically, Virtuoso has achieved an accuracy of 63.9%, which is more than 10% higher than some of the popular object detection models, FRCNN at 51.1%, and YOLO at 49.5%.more » « less
An official website of the United States government
